Local Machine

Our software packages are developed mainly in python on Linux machines. For deep learning related functionality, GPUs are required for speed.

  • OS

    • Unix-based OS (e.g. Linux, Mac OS X).

    • Recommendation: Ubuntu LTS

  • Install Miniconda (python 3.7): create a new conda env for each project

    • download

    • create new env:

      conda create -n ${conda-env-name}
      
    • activate new env:

      source activate ${conda-env-name}
      
    • deactivate env:

      source deactivate
      
  • Install Jupyter notebook for interactive result display

    • create new kernel (first install ipython, ipykernel):

      ipython kernel install --user --name ${conda-env-name} --display-name "${display-name}"
      
  • Mount pfister_lab2 file system to local machine

    • Install packages:

      sudo apt-get install cifs-utils
      
    • Get your gid on your local machine: id

    • Create the folder if it doesn’t exist sudo mkdir /mnt/pfister_lab2

    • Mount it with your rc username and local machine gid:

      sudo mount -t cifs -o vers=1.0,workgroup=rc,username=${1},gid=${2} \
      //coxfs01.rc.fas.harvard.edu/pfister_lab2 /mnt/pfister_lab2
      
  • Unix Tips

    • Terminal (split screen)

      • On mac: try iterm2

      • On Linux: try terminator or tmux

    • ssh

      • Automatic login in new bashes (after the login in a bash)

      • Create a file with the following content: vim ~/.ssh/config:

        Host *
          ControlMaster auto
          ControlPath ~/.ssh/master-%r@%h:%p
        
    • bash

      • Add useful alias: vim ~/.bashrc

        alias csh='ssh ${USERNAME}@login.rc.fas.harvard.edu'