Local Machine¶
Our software packages are developed mainly in python on Linux machines. For deep learning related functionality, GPUs are required for speed.
OS
Unix-based OS (e.g. Linux, Mac OS X).
Recommendation: Ubuntu LTS
Install Miniconda (python 3.7): create a new conda env for each project
create new env:
conda create -n ${conda-env-name}
activate new env:
source activate ${conda-env-name}
deactivate env:
source deactivate
Install Jupyter notebook for interactive result display
create new kernel (first install
ipython, ipykernel
):ipython kernel install --user --name ${conda-env-name} --display-name "${display-name}"
Mount pfister_lab2 file system to local machine
Install packages:
sudo apt-get install cifs-utils
Get your
gid
on your local machine:id
Create the folder if it doesn’t exist
sudo mkdir /mnt/pfister_lab2
Mount it with your rc username and local machine
gid
:sudo mount -t cifs -o vers=1.0,workgroup=rc,username=${1},gid=${2} \ //coxfs01.rc.fas.harvard.edu/pfister_lab2 /mnt/pfister_lab2
Unix Tips
Terminal (split screen)
On mac: try
iterm2
On Linux: try
terminator
ortmux
ssh
Automatic login in new bashes (after the login in a bash)
Create a file with the following content:
vim ~/.ssh/config
:Host * ControlMaster auto ControlPath ~/.ssh/master-%r@%h:%p
bash
Add useful alias: vim ~/.bashrc
alias csh='ssh ${USERNAME}@login.rc.fas.harvard.edu'